Using SAS Survey Procs for BRFSS Descriptive Analyses

Instructor: Donna Brogan, Ph.D. March 23, 2013 Saturday AM 2013 BRFSS Annual Conference dbrogan@emory.edu

WORKSHOP OBJECTIVES

- Methods: telephone sampling & estimation of population parameters, within BRFSS context
- Use SAS survey procedures to:
 - Estimate popn total/prevalence/mean
 - Also for subpopulations and/or domains
 - Estimate prevalence ratio or odds ratio (2 x 2)
 - Compare domains on prevalence/mean
 - All with estimated s.e. & CI

PREREQUISITES

- Foundations of statistical inference
- Intermediate statistical methods
- Epid measures of risk & association
- SAS for data management
- SAS STAT for analyses of SRS data
 - E.g. Proc MEANS, FREQ, UNIVARIATE, GLM
- See references: slide 190

Review: Sample Survey Basics & Terminology

Why and How Conduct BRFSS Surveys?

Context for BRFSS Sample Survey

Define BRFSS target population

- Adults resident in LA in 2004 (3.3 million)
- Noninstitutionalized, household popn (live in HU)
 - College dormitory? nursing home? military base?
- Adult = element in popn (unit of analysis)
- Population parameter(s) of interest
 - LA: # or % of adults who are binge drinkers
 - LA: mean body mass index (BMI) for adults

Why Conduct BRFSS Sample Survey?

- Want to know value of popn parameter(s)
- Value unknown unless measure all elements
 - Too expensive to do census/enumeration

- Thus, use sample survey methodology
 - Select probability sample of adults from popn
 - Measure variables on sampled adults
 - Analyze sample data: estimate popn parameters

Select Probability Sample from BRFSS Target Popn. How??

- 1. Simple/stratified random sampling
- 2. Area probability sampling (APS)

3. Telephone sampling (RDD variations)

4. Address based sampling (ABS)

1. Simple/Stratified Random Sampling: Not Feasible

- Sampling frame: list of adults in target popn
 - Name & contact information each adult in popn
 - Impossible to construct sampling frame

PSU(primary sampling unit)=adult (element)

One stage of sampling to get to adult

2. Area Probability Sampling: Judged Too Expensive

Multi-stage sampling to obtain sample adults

- PSU: 1 or more counties or county part
- SSU, TSU, etc.: CT, block, HU address
- Final sampling unit: adult (element)

Used by NHANES & NHIS, but not BRFSS

3. Telephone Sampling: Used by BRFSS & Other Surveys

- 1st stage frame: list of telephone numbers (PSUs) that link to target popn
 - Select sample of telephone numbers
- 2nd stage frame for sampled phone number: list of adults associated with phone
 - Select 1 (or more) adults into sample

Two stage sample to get to adult (element)

4. Address Based Sampling (ABS): Recent Method

- 1st stage frame: list of HU addresses (PSUs) that link to target popn
 - Use USPS and 911 to construct frame
- 2nd stage frame: list of adults (SSU) reside at sampled address
- Two stage sample

ABS replace telephone sampling in U.S.?

BRFSS Methods after Obtain Telephone Sample of Adults

- Telephone interview of sampled adult
 - CDC core & modules, state specific questions
- Data entry and processing
- Weighting & survey design variables
- Other calculated variables, e.g. BMI
- Annual dataset for all states released to states & to public (on WEB)

Review of BRFSS RDD Telephone Sampling Methods

Phase 1: Mid 1980's thru 2010

Phase 2: 2011 and Beyond

1st Stage BRFSS Sampling Frame Through 2010

- All possible landline phone numbers for state (PSU = phone number)
 - Computer generated by AC * prefix * xxxx
- Frame stratified by phone density
 - High/low density strata: high oversampled
 - Very low density numbers deleted from frame
- Frame maybe stratified by geography
 - State make inference to certain geog areas
 - AC & prefix used for geographic stratification

2nd Stage BRFSS Sampling Frame Through 2010

- 2nd stage frame: list of adults reside at HU of given sampled landline phone number
 - 1 adult selected with equal prob from sampling frame of all adults in household

SSU = adult (element)

BRFSS Sample of Adults Through 2010

- Unequal probability sample of adults for two reasons
 - Some PSU's (phone numbers) oversampled based on phone density and/or geography
 - And, hence, some undersampled
 - Adults in HUs with only one adult have larger prob of being selected into sample, compared to adults who live in HU's with 2 or more adults

Problems with BRFSS RDD Landline Sampling Methods

- 1. Survey response rate dropping over time
 - Sampled landline number: ring no answer
 - If answer, don't reveal # adults in HU
 - If adult selected, not agree to be interviewed
 - Some demographic groups particularly low RR
- 2. Percent of adults "cell only" steadily increasing (especially young, rent, minority)
 - Landline frame: severe undercoverage

Why Worry About These Two BRFSS Problems?

- **Each** of the 2 problems **may** result in biased estimators of popn parameters
- Don't know if estimators biased, since don't know true value of popn parameter
 - But research points in direction of bias
- Low face validity or credibility of survey
 - 1. Survey response rate is 25%
 - 2. Noncoverage of "Cell only": 54% of adults
 25-29, 50% of renters, 30% of adults

BRFSS Solutions to These 2 Problems: 2011 & Beyond

- New weighting method (raking) to adjust for unit nonresponse & do post-stratification
- New telephone sampling frame
 - Cell phone numbers on 1st stage sampling frame
 - An additional stratum to the landline strata
 - Interview cell sampled adult only if that adult is "cell only". If have landline, drop from sample.
 - Called dual frame RDD telephone sampling
- Note: nontelephone elements not covered

BRFSS Survey Design Variables Through 2010

_FinalWt

 Sampling weight variable to estimate all population parameters for adults

Ststr

- 1st stage stratification variable for landline sampling frame (state, density, geographic)
- Psu (in later years = Seqno)
 - Earlier years: cluster of phone numbers
 - Later years: phone number selected (marker)

More BRFSS Survey Design Variables Thru 2010

- Module for Sample Child
 - ChildWt, _Ststr, _Psu
 - Target Popn: children reside in state in HU
 - Unit of analysis = child
- Interview items about housing unit
 - _HouseWt, _Ststr, _Psu
 - Target Popn: HUs in state
 - Unit of analysis = HU

BRFSS Sampling Weight Variables through 2010

Sum of _FinalWt over r responding adults
 = # adults (noninst, HH) in state popn

 Sum of _HouseWt over r responding adults = # HUs in state (occupied??)

Sum of _ChildWt over responding adults
 with child data = # children (noninst, HH) in
 state popn

Survey Design Variables: BRFSS Dual Frame 2011 +

- LLCPWT adult final weight
 - Sampling weight variable to estimate all population parameters for adults
- _Ststr
 - 1st stage stratification variable for dual frame (state, density, geographic, landline/cell)
- Psu (= Seqno)
 - Marker for phone number selected

More Survey Design Vars: BRFSS Dual Frame 2011 +

- CLLCPWT child final weight
 - Sampling weight variable to estimate all population parameters for children
- Use above with _Ststr and _Psu

- Did not find HU sampling weight variable in 2011 dual frame BRFSS dataset
 - Would be complicated to calculate

BRFSS Sampling Weight Variables: 2011 onward

Sum of _CCLPWT over r responding adults
 = # adults (noninst, HH) in state popn

 Sum of _CLLCPWT over responding adults with child data = # children (noninst, HH) in state popn

Population Parameters in BRFSS Surveys

Their Definition and Estimation

Nominal Variables & Population Parameters

- Nominal variables (categorical unordered)
- Binge drinking (yes=1, no=0)
 - Population total (# binge bingers)
 - Population proportion or % (% binge drinkers)
- Type health plan (employer, Medicaid, etc.)
 - Population total: (# have employer plan)
 - Population proportion or %: % employer plan

Ordinal Variables & Population Parameters

- Ordinal variables (categorical ordered)
 - Health status (excellent, good, VG, fair, poor)
 - BMI status (underweight, normal, overweight, obese, morbidly obese)
- Population parameters:
 - Usually as for nominal

Count Variables and Population Parameters

- Count variable: # ER visits past 6 mos
 - Coded 0, 1, 2, 3, etc.
- Population total: total number ER visits made by popn in past 6 months
- Population mean: mean ER visits made by popn in past 6 months (but many 0)
- Population proportion or %: % make at least 1 ER visit past 6 months

Continuous Variables and Population Parameters

- Continuous variables
 - Height, weight, BMI
 - # cigarettes smoked per day, among smokers
- Population mean weight, mean BMI
- Subpopn mean: mean cigs smoked per day, among smokers
- Subpopn total: total cigs smoked per day, among smokers

Continuous/Count Vars as Categorical or Ordinal

- BMI: low, normal, overweight, obese
- BMI: obese, not obese

- Number ER visits past 6 months
 - None, 1 or more
 - None, 1-3, 4 or more

Population Parameters: Mathematical Definition

- Finite target population has N elements
 - N may be large (3.3 million), but not infinite
- Let i denote element i , i = 1, 2, ..., N
- Let y_i be value of variable y for element i
 - Continuous or count variable y, BMI or ER visits
 - Dichotomous variable y, e.g. disease yes/no
 - Categorical variable y, e.g. health plan type

POPULATION TOTAL Y Continuous Variable y=BMI

 $Y = \sum_{i=1}^{i=N} y_i$

Y = sum of BMI value for N popn elements

POPULATION MEAN Continuous Variable y=BMI

$$\frac{\sum_{i=1}^{i=N} y_i}{Y} = \frac{Y}{N}$$

Mean body mass index for N popn elements

Estimator of Mean BMI, Based on BRFSS Sample

$$\hat{Y} = \frac{\sum_{k=1}^{k=r} w_k y_k}{\sum_{k=1}^{k=r} w_k} = \frac{\hat{Y}}{\hat{N}}$$

- r = # adult respondents in BRFSS dataset
- w_k = value of sampling weight variable for adult k in sample (or child k, or HU k)

POPULATION TOTAL Y Dichotomous Var y (0,1)

- Assume y variable coded as:
 - 1=have attribute, 0 = not have attribute

$$Y = \sum_{i=1}^{i=N} y_i$$

Y = number of popn elements with attribute

Estimator of Popn Total Y, Dichotomous Var y (0,1)

- Assume y variable coded as:
 - 1=have attribute, 0 = not have attribute

$$\hat{Y} = \sum_{k=1}^{k=r} w_k y_k$$

POPN MEAN (PROP) Dichotomous Vary (0,1)

$$\frac{\sum_{i=1}^{i=N} y_i}{Y} = \frac{Y}{N} = P$$

Proportion of popn elements with attribute

Estimator of Popn Proportion Dichotomous Var y (0,1)

$$\hat{\bar{Y}} = \frac{\sum_{k=1}^{k=r} w_k y_k}{\sum_{k=1}^{k=r} w_k} = \frac{\hat{Y}}{\hat{N}} = \hat{P}$$

Terminology: Subpopulations & Domains

- Subpopulation (some elements of popn)
 - **Diabetics** only, e.g. number & % on insulin

- Domains—mutually exclusive/exhaustive subpopns formed by some variable
 - SEX: males & females (e.g. smoking prevalence)
 - AGEG: 3 age groups (e.g. diabetes prevalence)

Define Parameters for Subpopulations & Domains

 Form indicator variable which says if element i in popn belongs to subpopn d or domain d

- δ_{di} = 1 if element i in popn belongs to subpopn or domain d
- = 0 if element i in popn does **not** belong to subpopn or domain d

Subpopn/Domain d MEAN Continuous Var y = BMI

$$\bar{Y}_{d} = \left[\sum_{i=1}^{i=N} y_{i} \delta_{di}\right] / \left[\sum_{i=1}^{i=N} \delta_{di}\right] = \frac{Y_{d}}{N_{d}}$$

- N_d is number of popn elements in d
- Mean BMI for popn elements in d

Estimator of Mean BMI for Subpopn/Domain d

$$\hat{\overline{Y}}_{d} = \left[\sum_{k=1}^{k=r} w_k y_k \delta_{dk}\right] / \left[\sum_{k=1}^{k=r} w_k \delta_{dk}\right]$$

$$=\frac{\hat{Y}_d}{\hat{N}_d}$$

Subpopn/Domain d TOTAL Dichotomous Var y (0,1)

$$Y_d = \sum_{i=1}^{i=N} y_i \delta_{di}$$

 Number elements in subpopn/domain d with attribute defined by y variable (i.e. y=1)

Estimator of Subpopn or Domain d TOTAL y (0,1)

$$\hat{Y}_d = \sum_{k=1}^{k=r} w_k y_k \delta_{dk}$$

Subpopn/Domain d MEAN or Prop. Dichot Var y (0,1)

$$\begin{aligned} \overline{Y}_d &= [\sum_{i=1}^{i=N} y_i \mathcal{S}_{di}] / [\sum_{i=1}^{i=N} \mathcal{S}_{di}] \\ &= Y_d / N_d = P_d \end{aligned}$$

- N_d is number of elements in domain d
- P_d is proportion elements in d with attribute

Estimator of Subpopn or Domain d Mean/Proportion

$$\hat{\bar{Y}}_{d} = [\sum_{k=1}^{k=r} w_{k} y_{k} \delta_{dk}] / [\sum_{k=1}^{k=r} w_{k} \delta_{dk}]$$

$$= \hat{Y}_d / \hat{N}_d = \hat{P}_d$$

Note: y variable dichotomous (0, 1)

Relevance of Definitions for Parameters

- Recall: parameters for entire popn, for subpopn, for domains
- Helps analyst:
 - Decide what to estimate
 - Understand estimation formulas for parameters
 - Write program for sample survey software
 - Interpret computer output from survey software

VARIANCE ESTIMATION for BRFSS Surveys

Estimated Variance and Standard Error for Estimators of Popn/ Subpopn/Domain Parameters

Why need estimated S.E. for an estimator?

- Quantify sampling error (variability)
- Confidence interval on popn parameter
- Coefficient of variation for estimator
- Test hypotheses about popn parameters

 Recall: square root of estimated variance is estimated S.E. (standard error)

2 Factors Make Variance Estimation Nonstandard

- 1. Sampling plan is **not** SRS
- 2. Many estimators **not** linear in y or x variables, but are ratios
 - Previous slides with estimator formulas

- Often no "closed form" algebraic expression
- Thus, "approximate" estimated variance

Factor #1: NOT SRS 3 Attributes Complex Design

- A. Elements selected unequal probability
 - Easy to address
 - Do weighted analysis (see estimator formulas)
- B. Stratification in sampling plan
 - Easy to address BRFSS 1st stage stratification
 - Variance estimated within each stratum
 - Within strata estimated variances added up over strata to obtain desired estimated variance

Factor #1: NOT SRS (cont.) 3 Attributes Complex Design

- C. Elements in sample may be clustered
 - Early landline RDD sampling (Mitofsky-Waksberg) resulted in clustered adults
 - Since early 1990's list assisted landline RDD sampling (DSS, disproportionate stratified sampling) has no clustering of HUs or adults or children in BRFSS sample
 - For dual frame in 2011 +, no clustering of adults or of children

Factor # 2—Ratio Estimators 2 Approximation Methods

- Taylor Series Linearization (TSL)
 - In all survey software packages except WESVAR
- Replication Techniques
 - BRR = balanced repeated replication
 - JK = jackknife
 - Available in SUDAAN & in SAS & STATA survey procedures & in WESVAR
- BRFSS datasets are set up for using TSL

Taylor Series Linearization Nonlinear Estimators (e.g. Ratio)

- Expand formula for estimator as infinite series
 - Infinite series is linear in sample statistics

Truncate infinite series to first few terms

Estimate variance of truncated infinite series

Adults: Use Sample Data to Estimate Popn Total Y

Recall--definition of popn total Y

$$Y = \sum_{i=1}^{i=N} y_i$$

 $Y = \sum_{i=N}^{i=N} y_i$ y continuous, count or discrete (0, 1)

$$\hat{Y} = \sum_{k=1}^{k=r} w_k y_k$$

= estimator of Y

 w_k = value of weight variable _FinalWt for respondent adult k in dataset

Rewrite equation previous slide: Estimate Popn Total Y

• If is # of respondent elements (adults) from stratum h (based on _Ststr)

$$\hat{Y} = \sum_{h=1}^{h=L} \sum_{k=1}^{k=r_h} w_{hk} y_{hk} = \sum_{h=1}^{h=L} \sum_{k=1}^{k=r_h} z_{hk}$$

$$z_{hk} = w_{hk} y_{hk}$$

 Statistically independent sampling across the first stage strata

Variance Estimation Within Each Stratum

• Calculate mean of the \mathcal{Z}_{hk} within stratum h

$$\overline{Z}_h = \frac{1}{r_h} \sum_{k=1}^{k=r_h} z_{hk}$$

$$S_{zh}^{2} = \frac{1}{(r_{h} - 1)} \sum_{k=1}^{k=r_{h}} (z_{hk} - \overline{z}_{h})^{2}$$

Variance Estimation for

$$EstVar(Y) = \sum_{h=1}^{L} r_h s_{zh}^2$$

- Estimator is on slide 57
- NOTE: Weighted sum over strata of w/n stratum estimated variances

Estimated Variance for Other Estimators

- Ratio estimators: need to use TSL
 - Formulas more complicated
 - But, still sum of within stratum variances
- Subpopulation or Domain Estimators
 - Easy for estimated subpopn/domain totals
 - More complicated for ratio estimators

No more detail here—see math-stat books

BRFSS ANALYSIS

General Analytical Strategy

Prepare Dataset for Analysis

- Obtain national BRFSS dataset: WEB, other
- Subset to "state" or "states" of interest
- Subset to variables of interest
- Obtain national estimates from 50 + DC
 - If all states included questions of interest
- If analyze given module X (25 states used)
 - Inference not national, but union of 25 states

Check Coding of Variables: Recoding May Be Needed

- RFBING2 (binge drinking last 30 days)
 - 1=no, 2=yes, 9=dk, refuse, missing
 - Likely change 9 to . (missing) for analysis
- BMI4 (body mass index)
 - 0001-9988 BMI, 2672 implies 26.72
 - 9999 dk, refuse, missing
 - Change 9999 to dot, divide other values by 100
- Each adult asked above questions

Unweighted/Weighted Analyses with SAS Procs

- Unweighted SAS (e.g. FREQ, MEANS)
 - Results describe elements in sample
 - E.g., 66% of adult respondents are female
- Weighted SAS (e.g. FREQ or MEANS with Weight statement)
 - Point estimate is estimator of a popn paramter
 - Point estimate makes inference to population
 - E.g. estimated 53% of adults in popn are female
 - Will not give correct estimated s.e., CI, etc.

SAS PROCS FOR SAMPLE SURVEY DATA

General Features for Using These PROCS with BRFSS

Descriptive Survey Procs Available in SAS 9.2/9.3

- SURVEYFREQ (categorical data)
 - Similar to PROC FREQ, but for survey data
- SURVEYMEANS (continuous/categorical)
 - Similar to PROC MEANS, but for survey data
- SURVEYREG
 - Similar to PROC GLM, but for survey data
 - Estimate age-standardized prevalence or mean
 - Compare domains to each other
 - Macro for SurveyMeans does some of above

SAS SURVEY PROCS Describe Sample Design

- Need 3 statements below, in general
 - STRATA name(s) of 1st stage stratification variable(s)
 - CLUSTER name(s) of PSU variable(s)
 - WEIGHT name of sampling weight variable (only one variable)

BRFSS Thru 2010: Sample Design--SAS Survey Procs

- Proc Survey..... Varmethod = taylor...
- STRATA _Ststr ;
- CLUSTER _Psu ;
- WEIGHT _FinalWt ; (adult)
 - Or _ChildWt or _HouseWt
- One or more states, any ONE year
- NOT correct for >= 2 years combined

BRFSS 2011 +: Sample Design--SAS Survey Procs

- Proc Survey..... Varmethod = taylor...
- STRATA Ststr;
- CLUSTER Psu;
- WEIGHT _LLCPWT ; (adult)
 - Or _CLLCPWT for child
- One or more states, any ONE year
- NOT correct for >= 2 years combined

BRFSS Dataset for Workshop

LA 2004
la04v7.sas7bdat, n = 9064 Rs
On Workshop CD

Get BRFSS Dataset into SAS Work Directory

- SAS program ProcFormat2013.sas on C drive in folder Brogan/BRFSData
- Open this SAS program
- Run "proc format" part of program
- Choose appropriate Libname
- Read dataset into SAS Work Directory
- Run proc contents

Lecture Example 1 Nonsurvey PROCS in SAS

- Look at survey design variables
- Look at coding of some variables
- Proc Freq weighted: estimate popn parameters but no estimated s.e.
 - **Estimated** Number Binge Drinkers = 462,272 **Estimated** prev of binge drinking = 14.22%
 - **In** population of adults in LA in 2004, **IF** assume MCAR on binge drinking item nonresponse

Proc SurveyFreq

Analytical Capabilities

SurveyFreq Capabilities

- Categorical variables only (nominal/ordinal)
 - Tables of dimension 1, 2, 3, etc.
- Estimate popn percentage (prevalence), total
 - With estimated standard error & CI
 - With CV (coefficient of variation)
- Estimate percentages & totals for domains
 - With estimated SE & CI & CV (coeff of variation)

SurveyFreq Subpopulation Analyses

- No SubPopn statement in SAS survey procs
 - It should be available for the survey procs!
- Use indirect methods for subpopn analyses
 - These methods work in all SAS Survey Procs

SurveyFreq More Capabilities

- Estimate association for 2 x 2 table
 - Row = exposure, column = outcome
 - Estimate prevalence ratio, with CI
 - Estimate odds ratio, with CI
 - Estimate prevalence difference, with CI
 - Stratified analyses available: by a 3rd variable
- Chi-square tests for independence of 2 vars
 - Choose from 8 chi-square tests available

CV = Coefficient of Variation What is it?

- Characteristic of an estimator
- Quantifies sampling variability of estimator
 - relative to value of popn parameter
- Estimated CV(any estimator) =
 EstSE (estimator)/(Value of estimator)

$$EstCV(\hat{P}) = EstS.E.(\hat{P})/\hat{P}$$

How use CV?

Decide if estimator variability too high

- NCHS guideline
 - Do not report value of any estimator if its estimated CV exceeds 0.30 (i.e. 30%)

Some follow NCHS guideline, some not

Lecture Example 2 SurveyFreq

Population (adult) analysis: Prevalence of Binge Drinking Number of Binge Drinkers

LecEx 2A SurveyFreq Default output

```
proc surveyfreq data = La04
varmethod = taylor ;
strata _ststr / List ;
cluster _psu ;
weight _finalwt ;
```

tables _rfbing2 ; /* default printout */

LecEx 2B, SurveyFreq Add output options

```
proc surveyfreq data = LA04;
strata _ststr; /* drop List option */
cluster _psu;
weight _finalwt;
```

tables _rfbing2 / cl clwt cv cvwt ;

DDF for Sample Survey Denominator degrees of freedom

 DDF = number of PSUs in sample less number of 1st stage strata in sample design

- DDF for BRFSS LA 2004 dataset:
 - Each R in dataset is a PSU, hence 9064 PSUs
 - 18 1st stage (PSU) strata: 2 density by 9 regions
 - Thus, BRFSS DDF = 9064 18 = 9046

How Does SAS Use DDF in Its Calculations?

- Construct confidence intervals
 - Obtains critical value for CI, e.g. 95%, by going to Student t-distribution with degrees of freedom = ddf
- Conduct statistical tests of significance to test null hypotheses
- DDF for BRFSS survey typically thousands
- DDF for other surveys, e.g. APS, typically much smaller

What is Item Nonresponse?

- Obsn in dataset supposed to have value for a given variable, but does not
- Alcohol questions asked of all adults, so all obsns should have value for _RfBing2
- However, 179 obsns coded 9 (changed to dot) for _RfBing2
- They cannot be in analysis in LecEx02

Item Nonresponse: Default Method SAS survey procs

- SAS survey procs assume MCAR
 - Missing completely at random
- MCAR = those not respond to item like those who do respond to item, on average
- If assume MCAR, point estimate of mean, prevalence, etc. makes inference to popn
- SAS deletes from analysis any obsns with missing data for analysis variable(s)

Item Nonresponse: Other Method SAS survey procs

- Add NOMCAR to PROC statement
 - Does not make MCAR assumption
- Subpopn defined as adults in popn who would answer item(s), if asked
- SAS does correct subpopn analysis
- Point estimate makes inference to subpopn rather than to entire popn
- This method is default in SUDAAN

LecEx 2C, SAS With NOMCAR Option

• proc surveyfreq data = La04 NoMcar; strata _ststr ; Cluster _psu weight _finalwt ; tables _rfbing2 / cl clwt cv cvwt ; Some estimated standard errors & CIs differ slightly from LecEx 2B (SurveyFreq)

What Should I Use in SAS? Default MCAR or NOMCAR

- Only s.e. impacted, not point estimate
- Most people use MCAR without realizing it
- NOMCAR requires stated results as:
 - "in subpopn of those who would respond to.."
- I generally use NOMCAR because...
 - Is SUDAAN default
 - Estimated s.e.'s often slightly larger
 - Infer to entire popn if further assume MCAR

How SurveyFreq Estimates Popn Total

- _RFBING2 coded as 1=no, 2=yes
- How estimate total number binge drinkers?
- SAS forms indicator variable y for binge drinker
 - y = 1 if _RFBING2 = 2 (i.e. drinker)
 - y = 0 if _RFBING2 = 1 (i.e. \neq 2 and \neq ., not drinker)

$$\hat{Y} = \sum_{k=1}^{k=8885} w_k y_k = \text{estimated # binge drinkers}$$

How SurveyFreq Computes Clon Popn Total

Symmetrical CI around point estimate

$$CI = \hat{Y} \pm [EstS.E.(\hat{Y})] * t_{ddf,1-\alpha/2}$$

- t = critical value from Student t distbn
 - •Cuts off area $(1-\alpha/2)$ to left of critical value
 - Degrees of freedom = ddf = denominator degrees of freedom for the survey

How SurveyFreq Estimates Popn Percent

First estimate proportion who binge drink

$$\hat{P} = \frac{\hat{Y}}{\hat{N}} = \left[\sum_{k=1}^{k=8885} w_k y_k / \sum_{k=1}^{k=8885} w_k\right]$$
= estimated proportion who binge drink

Multiply estimated proportion by 100

How SurveyFreq Computes Cl on Popn Percentage

 By default: Wald confidence interval, symmetrical around point estimate

$$CI = EstPopn\% \pm (EstS.E.)*t_{ddf,1-\alpha/2}$$

- t = critical value from Student t distbn
- Other options in SAS 9.3
 - CL (type=logit), SUDAAN default CI method for percentages

Ex 2 (SAS): Results with 2 Item Nonresponse Methods

Estimates	Default MCAR	Use NOMCAR
Binge Prev %	14.22	14.22
SE binge prev%	0.5301	0.5301
CI binge prev%	(13.18, 15.26)	(13.18, 15.26)
# binge drinkers	462,272	462,272
SE # drinkers	18029	18050
CI # drinkers	426930,497613	426890,497654

Estimate # Drinkers when Item Nonresponse

- Estimated # drinkers: 462,272
 - Slight underestimate since 179 not respond

- Revised estimate for total, assume MCAR
 - (.142167) * (3322812) = **472,394**
- Approx estimated S.E. for revised total
 - (3322812) * EstSE (est prev .142167)

Lecture Example 3 SurveyFreq

Domain Analysis

Domains: males and females

Dependent Var: Binge Drinking

Lecture Example 3 SurveyFreq

- Estimate binge drinking prevalence, by sex
- Define 2 domains of interest:
 - Males and females
 - Use variable SEX to define the two domains
 - NOTE: no missing data on variable SEX

Each domain, estimate #/% who binge drink

LecEx 3A—SAS, 2 way table, default output

proc surveyfreq data = La04 NoMcar; strata _ststr ; cluster psu ; weight _finalwt; tables sex * _rfbing2 / Row ; • /* Sex is row variable, & it defines domains. Binge is column variable. Ask for **row** percents on **tables** statement. */

LecEx 3B—SAS Optional output & suppress output

proc surveyfreq data = La04 NoMcar;
strata _ststr; cluster _psu;
weight _finalwt;

 tables sex * _rfbing2 / Row CL clwt cv cvwt nocellpercent ;

How SURVEYFREQ Estimates Popn Total for Males

- How estimate total number male binge drinkers?
- SAS forms indicator variable y for binge drinking
 - y =1 if _RFBING2 = 2 (binge drinker)
 - y =0 if _RFBING2 = 1 (not binge drinker)
- SAS forms indicator variable for male

 $\delta_{mk} = 1$ if sample element k is male $\delta_{mk} = 0$ if sample element k is not male

How SURVEYFREQ Estimates Popn Total for Males

Estimated number of male binge drinkers is:

$$\hat{Y}_m = \sum_{k=1}^{k=8885} w_k \delta_{mk} y_k$$

How SURVEYFREQ Estimates Popn Percent for Males

Among males, estimated proportion who are binge drinkers is:

$$\hat{P}_{m} = \sum_{k=1}^{k=8885} w_{k} \delta_{mk} y_{k} / \sum_{k=1}^{k=8885} w_{k} \delta_{mk}$$

Multiply estimated proportion by 100

How Compare Domains? SurveyFreq

Example: Compare Males to Females on Binge Drinking

Compare 2 Domains on Binge Drinking

Testing hypothesis approach

- Several chi-square tests for survey data
- Null: 2 variables (sex & binge) independent

Estimation approach for 2 x 2 table

- Strength of association between 2 variables
- Prevalence ratio (PR) & odds ratio (OR)
- Prevalence difference (PD)

SurveyFreq expects 2 x 2 table set up as follows for OR

- Row Variable is Exposure
 - Lower code(row 1)=Exposed, Not Exposed(row2)
- Column Variable is Disease
 - Lower code(col 1)= Disease, No Disease (col 2)
- If your variables not coded this way,
 - Recode variables
 - Reinterpret output to what you want
 - Perhaps can use ORDER = option on PROC for SurveyFreq

2 x 2 Table expected by SurveyFreq

	Disease	Disease	COLUMN
	Yes = 1	No = 2	TOTAL
Expose	$\hat{N} - \Lambda$	$\hat{N} - D$	$\hat{N}_{1+} = A + B$
Yes = 1	$I\mathbf{v}_{11} = A$	$I\mathbf{v}_{12} = \mathbf{D}$	$I\mathbf{v}_{1+} = A + \mathbf{D}$
Expose	\hat{N} – C	\hat{N}	$\hat{N}_{2+} = C + D$
No= 2	$I\mathbf{v}_{21} = \mathbf{C}$	$N_{22} = D$	$IV_{2+} = C + D$
ROW	$\hat{N}_{{\scriptscriptstyle +}1} =$	$\hat{N}_{+2} =$	$\hat{N}_{\scriptscriptstyle{++}} = A + B$
TOTAL		+2	
	A+C	B+D	+C+D

Odds Ratio Calculation by SurveyFreq

- For row 1 (exposed) estimates ODDS of being in column 1 (outcome of interest)
- For row 2 (nonexposed) estimates ODDS of being in column 1
- Takes ratio (exposed to nonexposed) of the 2 estimated ODDS
- Familiar formula, BUT table has estimated population totals, NOT sample size

Odds Ratio Calculation in SurveyFreq

OR

$$EstOR = \frac{\stackrel{\wedge}{N_{11}}}{\stackrel{\wedge}{N_{21}}} = \frac{\stackrel{\wedge}{N_{11}} \stackrel{\wedge}{N_{22}}}{\stackrel{\wedge}{N_{12}} \stackrel{\wedge}{N_{21}}} = \frac{AD}{BC}$$

Odds Ratio Calculation if Variables Coded Differently

- Both variables reverse coded from what software expects: get OR you want
- One variable reverse coded: get inverse of OR you want
 - Take reciprocal of estimated odds ratio and reciprocal of lower/upper limits of confidence interval in order to get the OR that you want

Prev Ratio Calculation by SurveyFreq

- For column (disease) variable, you define if column 1 or 2 is outcome of interest
- For each row, software estimates prevalence of being in specified column
- SurveyFreq takes ratio of two estimated prevalences, with row1 in numerator & row 2 in denominator (no choice)

"Prevalence Ratio" col 1 SurveyFreq

PR1

$$EstPR1 = \frac{\stackrel{\wedge}{N_{11}}}{\stackrel{\wedge}{N_{21}}} = \frac{A/(A+B)}{C/(C+D)}$$

"Prevalence Ratio" col 2 SurveyFreq

PR2

$$EstPR2 = \frac{\stackrel{\wedge}{N_{12}}}{\stackrel{\wedge}{N_{22}}} = \frac{B/(A+B)}{D/(C+D)}$$

Prevalence Difference Calculation by SurveyFreq

- For column (disease) variable, you define if column 1 or 2 is outcome of interest
- For each row, software estimates prevalence of being in specified column
- Software subtracts row2 prevalence from row1 prevalence (no choice)

PrevDiff Calculation (col 1) by SurveyFreq

$$\begin{aligned} Row1 prev &= \hat{N}_{11} / \hat{N}_{1+} = A / (A + B) \\ Row2 prev &= \hat{N}_{21} / \hat{N}_{2+} = C / (C + D) \\ Totalprev &= \hat{N}_{+1} / \hat{N}_{++} = \frac{(A + C)}{(A + B + C + D)} \\ prevdiff &= \hat{N}_{11} / \hat{N}_{1+} - \hat{N}_{21} / \hat{N}_{2+} \end{aligned}$$

PrevDiff Calculation (col 2) by SurveyFreq

$$\begin{aligned} &Row1prev = \hat{N}_{12}/\hat{N}_{1+} = B/(A+B) \\ &Row2prev = \hat{N}_{22}/\hat{N}_{2+} = D/(C+D) \\ &Totalprev = \hat{N}_{+2}/\hat{N}_{++} = \frac{(B+D)}{(A+B+C+D)} \\ &prevdiff = \hat{N}_{12}/\hat{N}_{1+} - \hat{N}_{22}/\hat{N}_{2+} \end{aligned}$$

SurveyFreq Syntax for Odds Ratio, Prev Ratio, Prev Diff

- Request options on **Tables** statement
- Reminder: only for 2 x 2 table
- OR odds ratio, column 1 & column 2 prevalence ratio ("relative risk")
- RISK prevalence (risk) for row 1, row 2, & union, prev difference (row 1 – row 2), for each of the 2 columns
- RISK1 or RISK2 RISK (above), but only for chosen column

Lecture Example 7 SurveyFreq

Odds ratio
Prevalence Ratio
Prevalence Difference
Sex and Binge Drinking

LecEx 7A SurveyFreq OR & RISK __RFbing2

proc surveyfreq data = La04 NoMcar ..;
 strata _ststr; cluster _psu;
 weight _finalwt;
 tables sex * _Rfbing2 / row or risk nocellpercent;
 Note: _rfbing2 not coded as SAS expects,

i.e. column 2 is outcome of interest

LecEx 7B OR & Risk1

SurveyFreq Binger

- proc SurveyFreq data = La04 NoMcar....;
 strata _ststr; cluster _psu;
 weight _finalwt;
 tables sex * binger / row or risk1 nocellpercent;
- Note: binger is coded as SAS expects, i.e.
 column 1 is outcome of interest, use Risk1

LecEx 7C SurveyFreq OR & Risk1 3 variables

proc SurveyFreq data = La04 NoMcar ...; strata _ststr; cluster _psu; weight __finalwt ; tables _age3r * sex * binger / row or risk1 nocellpercent; Note: "stratified" (by age) analysis of 2 x 2 tables (sex * binger)

Prev Ratio, Odds Ratio, Prev Diff: Use which one?

- Each assesses relationship between 2 variables
- DB personal preference: prev ratio over odds ratio
 - Estimate prevalence ratio directly, survey design
 - Don't need to use OR as "pretend" risk ratio, as is done in case-control studies (no other choice)
- Rare outcome (disease): OR ≅ PR
- Common outcome: OR maybe lot larger than PR
 - Estimated OR = 3.96 and PR = 3.29 for binge (M to F)
- May want OR if planning logistic regression
- Lots of discussion on this topic in epid literature

Subpopulation Analyses in SAS Survey Procedures

No Subpopulation Statement available yet in SAS Survey Procedures

Example A: Analysis of a Subpopulation

- Subpopulation = diagnosed diabetics
 - **Diabetes**: 1=yes, 2=no, . = no answer
- Variable of interest Insulin:
 - For diabetics: 1=yes, 2=no, .= no answer
 - All others: insulin value is blank, . or .S
 - DB coding preference: . versus .S
- Subpope parameters to estimate:
 Among diabetic adults, % & # take insulin

Example B: Analysis of a Subpopulation

- Subpopulation = diagnosed diabetics
 - Diabetes: 1=yes, 2=no, . = no answer
- Variable of interest BMI:
 - For diabetics: BMI = some value, or .(dot)
 - All others have value of BMI also, or .(dot)
- Subpopn parameter to estimate:
 Among diabetic adults, mean BMI

Theory of Subpopulation Analyses

- Earlier formulas calculate point estimates: use entire sample with indicator variable to "zero out" obsns not in subpopulation
- For estimated standard error, also use entire sample. Obsns in dataset who do not belong to subpopn contribute to calculation of estimated s.e.
- Domain analyses: examples of subpopns

Subpopulation Analysis in SAS Survey Procedures

- No subpopulation statement in SAS
 - Option in SUDAAN, STATA, SPSS & WesVar
- SAS knows how to conduct subpop analyses
 - Does so for NoMcar & for domain analyses
- But, not let you define your own subpop
- Default & "workaround methods" suggested by SAS for your subpop analyses may be cumbersome &/or underestimate s.e.

DB WorkAround Method for Subpop Analyses in SAS

- Always use NoMCAR on PROC statement
- For obsns **not** in subpop, code value of dependent variable = dot (e.g. . or .x)
- For obsns where DK if in subpopn due to item nonresponse, code dep var = . or .x
- Yields standard subpopulation analysis
 - SAS output agrees with SUDAAN with SUBPOPN

Lecture Example 8 SurveyFreq

Subpopulation Analysis of Diagnosed Diabetics

LecEx 8A Check coding of variables

- Proc Freq data = La04 ;
- TABLES diabetes * insulin / list missing;
- Diabetes= 1=yes (840)
 - Insulin: 1=yes (217), 2=no (622), .=miss (1)
- Diabetes =2= no (8206), Insulin = .
- Diabetes = \cdot = dk (18), Insulin = \cdot

LecEx 8B: Estimate Prevalence of Diabetes

- Proc SurveyFreq data = La04 NoMcar ..;
 Strata _ststr ;
 Cluster _psu ;
 Weight _finalwt ;
- TABLES diabetes / CL CLwt ;

LecEx 8C: % and # of Diabetics Take Insulin

- Proc SurveyFreq data = La04 NoMCAR nosummary;
- Strata __ststr ; Cluster __psu ;
- Weight _finalwt ;
- TABLES insulin / cl clwt;
- DB work-around method: subpop analysis
 - Variable Insulin coded dot: obsns not in subpop

LecEx 8D. Among Diabetics, % and # Take Insulin, by Sex

- Proc SurveyFreq Data=La04 nomcar
- Strata __ststr ; Cluster __psu ;
- Weight _finalwt ;
- TABLES sex * insulin / row CL nocellpercent risk1 OR;
- DB workaround method. Note that value of variable Insulin is dot for all obsns not in subpop

Proc SurveyMeans

Analytical Capabilities

SurveyMeans Basic Capabilities

- Continuous/count variables (BMI, ER visits)
 - Estimate Mean & Total with s.e., CI, CV
 - Estimate Percentiles
- Categorical variables (binge, marital status)
 - Estimate Percentage/proportion & Total with s.e., CI, CV
- Above for entire popn, domains, subpop
 - Need workaround method for subpopn analysis

SAS SurveyMeans Additional Capabilities

- Estimate population parameters that are ratios (used infrequently, but can be useful)
- One-sided confidence intervals
 - <u (- ∞ is lower limit); >s (+ ∞ is upper limit)
- Compare domains to each other
 - Only in SurveyMeans macro available on WEB

SurveyMeans Syntax for BRFSS Survey, 1 year

- Proc SurveyMeans data = .. options ;
- Strata _Ststr ; Cluster _Psu ;
- Weight _FinalWt ;
- Var _bmir _bmi4cat _RfBing2 ;
- Class _bmi4cat _RfBing2 ;
 - Class statement identifies vars on Var statement analyzed as categorical; other vars on Var statement analyzed as continuous

SurveyMeans Keywords DOMAIN statement

- Domain Sex Race4 Age3r ;
 - Identifies domains for analysis
 - Variables on VAR statement analyzed for each level of each DOMAIN variable
 - Correct subpop analyses done by SAS here
- BY statement: do not use, use DOMAIN
 - Because standard error estimated correctly with DOMAIN statement & not with By

Some Options on PROC SurveyMeans Statement

- ALL (outputs all statistics)
- NOBS MEAN STDERR CLM
 - Above 4 are default for means/proportions
- CV NMISS (# obsns missing in analysis)
- SUM (estimated total for y variable)
- **STD** (estimated s.e. of estimated total)
- CLSUM (CI on total—2 sided)
- CVSUM (estimated CV of estimated total)

Lecture Example 9 SurveyMeans

Continuous and Categorical Dependent Variables

Lecture Example 9 LecEx 9A

- Estimate mean BMI: _Bmir
- Estimate binge drink prev (distribution):
 - _RfBing2 or Binger or Binge01
- 9A, check variables for coding/missing
 - Proc freq ; tables _rfbing2 ; 179 missing
 - Proc univariate; var _bmir; 497 missing, also min = 6.68, max = 99.98 (OUTLIERS?)
- Note: I analyze _bmir values as real

LecEx 9B SurveyMeans Default

Proc SurveyMeans data=La04 NoMcar;
Strata _Ststr ; Cluster _Psu;
Weight _FinalWt;
Var _Bmir Binge01 _RfBing2;
Class _RfBing2 ;
/*default: get nobs, mean, stderr, clm */

LecEx 9C _Bmir with Options, SurveyMeans

- Proc SurveyMeans data = La04 nobs
 nmiss mean stderr cv clm min
 max range lclm uclm df NoMcar;
- Strata _Ststr ; Cluster _Psu ;
- Weight _FinalWt ;
- Var _Bmir ;

LecEx 9C Binge01 SurveyMeans, Options

- Proc SurveyMeans data = La04
 nobs nmiss mean stderr cv clm
 lclm uclm sum std clsum cvsum
 lclsum uclsum df NoMcar;
 Strata _Ststr ; Cluster _Psu;
- Weight __FinalWt ;
- VAR Binge01;

LecEx 9D Percentiles SurveyMeans _bmir

Proc SurveyMeans data = La04 NoMcar quartiles percentile=(42 64) ;

- Strata _Ststr ; Cluster _Psu ;
- Weight __FinalWt ;

Var _Bmir ;

Lecture Example 10 SurveyMeans

Domain Analyses (Sex) for BMI and Binge Drinking

LecEx 10. Sex Domains: SurveyMeans

Proc SurveyMeans data=La04 NoMcar;
Strata _Ststr ; Cluster _Psu;
Weight _FinalWt ;
Var _Bmir _RfBing2 ;
Class _RfBing2 ;
Domain Sex ;

Do Males/Females Differ on Binge? BMI? SurveyMeans

- Cannot answer using SurveyMeans
 - Unless use SurveyMeans macro on WEB
- For binge drinking, use SURVEYFREQ
 - TABLES sex * _rfbing2 / chisq ;
 - Use prev ratio, prev difference, odds ratio (?)
- For mean BMI, can use SURVEYREG
 - Dependent = _BMIR, Independent = SEX
 - Test regression coefficient for SEX
 - Not illustrated here

SAS MACRO %SMSUB

- http://support.sas.com/kb/25/033.html
- Supplements SURVEYMEANS calculations
- Contrasts for means, totals, & ratios
- Real SUBPOP statement
- Ratio estimates for subgroups
- Subgroup & overall estimates in 1 table

Lecture Example 11 SurveyMeans

Domains Formed by Cross-Classification of Two Variables

LecEx 11. Mean _Bmir SurveyMeans

Proc SurveyMeans data=La04 NoMcar;
 Strata _Ststr ; Cluster _Psu;
 Weight _FinalWt;

- Var _Bmir ;
- Domain race4 sex sex * race4 ;

Estimated Mean BMI, by RaceEth & Sex, LA, 2004

Race/Eth	Male	Female
W_NH	27.7	26.1
B_NH	27.9	29.1
HISPANIC	27.1	27.2
OTH_NH	28.4	26.6

Lecture Example 12 SurveyMeans

Subpopulation Analysis: Same Procedure as Discussed Earlier

Subpopulation Analyses: Adult Diagnosed Diabetics

- Estimate percentage on insulin (diabetics)
 - INSULIN: missing value for all nondiabetics

- Estimate mean BMI for diabetics only
 - BMIR—nondiabetics have value for variable

LecEx12B. Insulin among Diabetics. SurveyMeans

Proc SurveyMeans NoMcar;
Strata _STSTR ; Cluster _PSU;
Weight _FinalWt;
VAR Insulin ;
CLASS Insulin ;
DB work-around method for subpopn

INSULIN coded dot for all nondiabetics

153

LecEx 12C. Mean BMI among Diabetics. SurveyMeans

- DB method for subpopn
- Recode _bmir to dot if obsn is not a diagnosed diabetic; new dataset bmi_diab
- Proc Surveymeans NoMcar data = bmi_diab ...
- Strata ...; Cluster; Weight ...;
- Var _bmir ;

LecEx 12D. Mean BMI among Diabetics. SurveyMeans

- Another method for subpop analysis
- Proc Surveymeans NoMcar data =
 La04 ...
- Strata ...; Cluster; Weight ...;
- Var _bmir ;
- Domain Diabetes ;
- Get twice the output that you want

Compare Domains to Each Other

Categorical Variables Only Chi-Square Tests on Two Way Tables, R x C

Chi-Square Tests-Survey Data R x C Table

- Are 2 categorical vars related (associated)?
 - Males/females same prevalence binge drinking?
 - 2x2: also prev difference, prev ratio, odds ratio
 - Three age domains same prevalence?
 - Four race/eth domains same BMI cat distbn?
- Null Hypothesis:
 - Two variables are statistically independent
- Alternate Hypothesis
 - Two variables not statistically independent

SurveyFreq: 4 Types Chi-Square Tests, all Pearson

- Pearson type test (based on proportions)
 - Observed minus expected number of elements in a cell—weighted of course
- WCHISQ request gives 2 tests (W = Wald)
 - Unadjusted F Wald, adjusted F Wald
 - Unadjusted = adjusted for 2 x 2 table
- CHISQ Rao-Scott Pearson modification
- CHISQ1 Minor variation on CHISQ

SurveyFreq: 4 More Chi-Square Tests

- Loglinear test (based on log odds ratios)
 - WLLCHISQ request gives 2 tests (W = Wald)
 - Unadjusted F Wald, adjusted F Wald
 - Unadjusted = adjusted for a 2 x 2 table
- Likelihood ratio type test (ratio obs/exp)
 - LRCHISQ Rao-Scott LR modification
 - LRCHISQ1 minor variation on LRCHISQ

8 (or 6) Chi Square Tests! Which one(s) to use?

- SAS manual--discussion & references
 - Several anticonservative if table sparse & if survey DDF small wrt (R-1)(C-1)
- STATA manual recommendation
 - Always use Rao-Scott Pearson (CHISQ option in SURVEYFREQ)
- BRFSS surveys—typically very large ddf
 - So no worry about small survey DDF

Lecture Example 4 (2 x 2) SurveyFreq Chi-Square

- Proc SurfeyFreq data = La04 NoMcar ;
- strata _ststr; cluster _psu;
- weight _finalwt ;
- TABLES sex * _rfbing2 / ROW CL chisq chisq1 | Irchisq | Irchisq1 wchisq wllchisq nocellpercent;
- Everything after slash mark is an option
- Request 6 chi-square tests, as illustration

Interpretation of Significant Chi-Square Tests (2 x 2)

- CHISQ, CHISQ1, LRCHISQ, LRCHISQ1, WCHISQ
 - Prevalence of binge drinking not equal for males & females in popn: males higher
- WLLCHISQ
 - Odds of binge drinking not equal for males & females in popn: males higher

Lecture Example 5 (3 x 2) SurveyFreq Chi-Square

Proc SurveyFreq NoMcar ...;
Strata _ststr; Cluster _psu;
Weight _finalwt;
TABLES age3r * _rfbing2 / ROW chisq chisq1 Irchisq Irchisq1

Since no CL option, no cell percent output

wchisq wllchisq nocellpercent;

Interpretation of Significant Chi-Square Tests (3 x 2)

- CHISQ, CHISQ1, LRCHISQ, LRCHISQ1, WCHISQ
 - Prevalence of binge drinking not equal for 3 age domains in popn
- WLLCHISQ
 - Odds of binge drinking not equal for 3 age domains in popn
- Tests not say how age domains differ on prevalence or odds

Lecture Example 6 3 way table in SURVEYFREQ

- Proc SurveyFreq data = La04 NoMcar;
- Strata _ststr ; Cluster _psu ; Weight...;
- TABLES age3r * sex * _rfbing2 / ROW chisq nocellpercent;
- Analysis: for each level of age3r,
 - Prevalence of binge drinking, by sex
 - Chi-square test of sex and binge drinking

Interpretation of Significant CHISQ Tests in Example 6

 For each age domain, males/females in the population differ on binge drinking prev: males higher

Estimated binge drinking prevalences

• Age 18-34: 34% M 12% F

• Age 25-54: 21% M 7% F

• Age 55+: 10% M 2% F

LecEx13. SurveyFreq Binge Prevalence by Race/Eth

- Proc SurveyFreq data = La04 NoMcar;
- Strata _ststr; Cluster _psu;
- Weight __finalwt ;

Tables race4 * binge01 / row chisq CL nowt;

Example 13 Results Estimated Binge Prevalence

- WNH 15.7%
 - 5.7% Hisp
- BNH 10.4% OtherNH 12.4%
- Rao-Scott chi-square test: p < .0001
 - All 4 domains not have same prevalence
 - SurveyFreq: not indicate which domains differ
- SurveyMeans: no option compare domains
 - Except if use SAS MACRO %SMSUB
- Can compare domains with SurveyReg

23.7%

Compare Domains to Each Other on Mean or Prevalence

Can Use SAS SurveyReg With Contrast and Estimate

Some Characteristics of SAS SURVEYREG

- Linear regression
 - Dependent variable continuous (usually)
 - Independent vars—continuous/categorical
- Similar to nonsurvey PROC GLM
 - Can use Contrast & Estimate statements
- Wald F test used to test default null hypotheses & those from Contrast or Estimate requests (sometimes is t-test)

Use SURVEYREG to Compare Domains

- Fit a "cell mean" model (no intercept)
 - Dependent variable: continuous (e.g. BMI) or dichotomous coded 1,0 (e.g. BINGE01)
 - Independent variable: domain variable
- Vector of regression coefficients is domain means or proportions
- Contrast: form linear combinations of regression coeffs want to estimate or test

What Is A Linear Contrast? Quick Review: BMI / Sex

Define a vector of domain (sex) means

$$egin{array}{c|c} ar{Y}_M \ ar{Y}_F \end{array}$$

mean BMI

• Define row vector of constants (linear contrast) $\begin{vmatrix} 1 & -1 \end{vmatrix}$

Linear Contrast BMI/Sex

Take product of two vectors (row x column)

$$egin{array}{c} |ar{Y}_{\!M} \ ar{Y}_{\!F} \ ert \end{array}$$

$$\begin{vmatrix} 1 & -1 \\ \hline V \end{vmatrix} = \overline{Y}_M - \overline{Y}_F$$

- Want to estimate or test domain differences
- Tell SurveyReg cell mean model, dependent var (BMI), ind. variable (sex), & linear contrast

Another Linear Contrast Example: BMI/Race

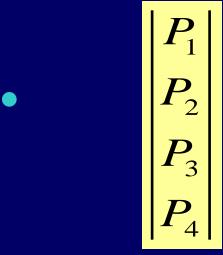
Define a vector of domain (race) means-BMI

$$egin{array}{c} ar{Y}_1 \ ar{Y}_2 \ ar{Y}_3 \ ar{Y}_4 \ \end{array}$$

• Define row vector of constants (linear contrast) $\begin{vmatrix} 1 & 0 & -1 & 0 \end{vmatrix}$

Another Linear Contrast Example: BMI/Race

Multiply 2 vectors together (row x column)


$$egin{array}{c} |ar{Y}_1| \ ar{Y}_2| \ ar{Y}_3| \ ar{Y}_4| \end{array}$$

$$= \overline{Y}_1 - \overline{Y}_3$$

- Want to estimate or test domain differences
- Tell SurveyReg cell mean model, dependent var (BMI), ind. variable (race), & linear contrast

Another Linear Contrast Example: Binge/Race

Define a vector of domain (race) props

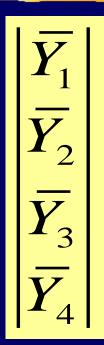
proportion binge drink

• Define row vector of constants (linear contrast) $\begin{vmatrix} 1 & 0 & -1 & 0 \end{vmatrix}$

Another Linear Contrast Example: Binge/Race

Multiply 2 vectors together (row x column)

Multiply 2 vectors together (row x column)
$$\begin{vmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{vmatrix}$$
Want to estimate or test demain difference


- Want to estimate or test domain differences
- Tell SurveyReg cell mean model, dependent var (binge01), ind. variable (race), & linear contrast

Lecture Example 14A SURVEYREG: BMI & Race/Eth

- Proc surveyreg data =
- Strata _ststr; Cluster _psu;
- Weight _Finalwt ;
- CLASS Race4 ; /* precede model */
- Model _bmir = Race4 / NOINTSolution CLparm ;
 - No intercept in model (cell mean model)

Cell Mean Model bmir and Race4

Vector of popn regression coeffs

 1st regr coeff is WNH mean BMI, 2nd is BNH, 3rd is Hispanic, 4th is OtherNH

SURVEYREG Contrast/Estimate Statements

CONTRAST statement

 Tests null hypothesis: popn value of specified contrast equals zero

ESTIMATE statement

- Estimates popn value of specified contrast
- With estimated standard error & CI (option)
- Statements used here as in PROC GLM
 - GLM is only for SRS

Lecture Ex 14B (slide edit) Add statements to Ex 14A

• CONTRAST 'BNH minus WNH' RACE4 -1 1 0 0;

$$-\overline{Y}_1 + \overline{Y}_2$$

• ESTIMATE 'BNH minus WNH' RACE4 -1 1 0 0;

$$-\overline{Y}_1 + \overline{Y}_2$$

Lecture Ex 14B (slide edit) Add statements to Ex 14A

 CONTRAST 'Hispanic minus WNH' RACE4 -1 0 1 0 ;

$$-\overline{Y}_1 + \overline{Y}_3$$

ESTIMATE 'Hispanic minus WNH'
 RACE4 -1 0 1 0 ;

$$-\overline{Y}_1 + \overline{Y}_3$$

Lecture Ex 14B (slide edit) Add statements to Ex 14A

CONTRAST 'BNH minus Hispanic'
 RACE4 0 1 -1 0 ;

$$\overline{Y}_2 - \overline{Y}_3$$

ESTIMATE 'BNH minus Hispanic'
 RACE4 0 1 -1 0 ;

$$|\overline{Y}_2 - \overline{Y}_3|$$

Conclusions Regarding Race/Eth and Mean BMI

- For population of noninstitutionalized adults resident in LA in 2004 (who would agree to report height & weight, if asked):
- 1. BNHs have higher mean BMI than WNHs
- 2. No evidence to question assumption that Hispanics & WNHs have same mean BMI
- 3. BNHs have higher mean BMI than Hispanics

Compare 4 Race/Ethnicity Domains on Binge Prevalence

- In previous LecEx 14, use binge01 as dependent variable instead of _bmir.
- Cell mean model will estimate binge prevalence for each race/ethnicity domain
- Compare domains to each other with Contrast or Estimate

Lecture Example 14C Use SURVEYREG

- Proc surveyreg data =
- Strata _ststr; Cluster _psu;
- Weight _Finalwt ;
- CLASS Race4 ; /* precede model */
- Model binge01 = Race4 / NOINT
 Solution CLparm;
 - No intercept in model (cell mean model)

Cell Mean Model Binge01 and Race4

Vector of popn regression coeffs

 $egin{array}{|c|} P_1 \ P_2 \ P_3 \ P_4 \ \end{array}$

1st regr coeff is WNH prev, 2nd is BNH prev,
 3rd is Hispanic prev, 4th is OtherNH prev

Lecture Ex 14D Add statements to Ex 14C

CONTRAST 'WNH minus BNH'
 RACE4 1 -1 0 0 ;

$$P_1 - P_2$$

ESTIMATE 'WNH minus BNH'
 RACE4 1 -1 0 0 ;

$$|P_1 - P_2|$$

Lecture Ex 14D Add statements to Ex 14C

 CONTRAST 'Hispanic minus WNH' RACE4 -1 0 1 0 ;

$$-P_1 + P_3$$

• ESTIMATE 'Hispanic minus WNH' RACE4 -1 0 1 0;

$$-P_1 + P_3$$

Lecture Ex 14D (slide edit) Add statements to Ex 14C

CONTRAST 'Hispanic minus BNH'
 RACE4 0 -1 1 0 ;

$$-P_2 + P_3$$

ESTIMATE 'Hispanic minus BNH'
 RACE4 0 -1 1 0 ;

$$-P_2 + P_3$$

Conclusions Regarding Race/Eth & Binge Drink Prev

- For population of noninstitutionalized adults resident in LA in 2004 (who would agree to provide alcohol consumption info, if asked):
- 1. BNHs have lower binge prev than WNHs
- 2. WNHs vs. Hispanics: p = .0549
 Estimated diff = .0804, est se = .0419
- 3. BNHs have lower binge prev than Hispanics

REFERENCES

References on Sample Survey Design and Analysis

Recommended Books: Surveys & Their Analysis

- Heeringa, Steven, BT West, PA Berglund. <u>Applied</u> <u>Survey Data Analysis</u>, Chapman & Hall/CRC, Boca Raton, FL, 2010. Excellent. \$84 list.
- Groves, Robert et al, Survey Methodology, 2nd edn., John Wiley, 2009, paper, \$85 list.
 - Introduction/overview of all aspects of surveys
- Korn, Edward & Barry Graubard, <u>Analysis of Health</u> <u>Surveys</u>, John Wiley, 1999. \$165 list.
 - Strategies for survey data analysis, math-stat useful

Recommended Books: Sampling Methods & Analysis

- Lee, Enu Sul & Robert Forthofer. <u>Analyzing</u>
 <u>Complex Survey Data, 2nd edn,</u> 2006, Sage Publs.
 - Short, concepts oriented, condensed Korn/Graubard
- Lohr, Sharon. <u>Sampling: Design and</u>
 <u>Analysis.</u> 2010, Brooks/Cole, Cengage Learning.
 - Applied introduction to sampling (algebra)
 - Clear explanations and real-life examples
- Cochran, William G. <u>Sampling Techniques:</u> 3rd Edition. 1977, John Wiley. Math-stat.

Some Useful WEB Sites

- http://www.amstat.org/sections/srms
 - ASA, Survey Research Methods Section
 - What Is A Survey? booklets excellent
- http://www.hcp.med.harvard.edu/statistics/surv ey-soft/
 Software for survey data
- http://www.aapor.org . Go to Resources & Education, then Researchers, then: Best Practices, Standard Definitions Response Rate (2011), Poll/Survey FAQ. Excellent discussions.

Special Issues of Public Opinion Quarterly

- Vol. 70, No. 5, 2006. "Special Issue: Nonresponse Bias in Household Surveys"
- Vol. 71, No. 5, 2007. "Special Issue: Cell Phone Numbers & Telephone Surveying in U.S.
- Vol. 74, No.5, 2010. "Special Issue: Total Survey Error"
- http://www.oxfordjournals.org/our_journals/po q/collectionspage.html
 PH Survey Methods

Some Survey Research Journals

- Survey Methods: Insights from the Field. http://surveyinsights.org/ (electronic)
- Journal of Survey Statistics & Methodology. http://www.oxfordjournals.org/our_journal-s/jssam/
- Survey Methodology.
 http://www.statcan.gc.ca/ads-annonces/12-001-x/index-eng.htm

Lab Exercises See MS-Word documents

- Estimate # diabetics & diabetes prevalence
 - Then by sex, by age, by race/eth, race/eth * sex
- Compare males/females on diabetes via prevalence ratio, risk difference, odds ratio
 - Now do comparison within each level of race/eth
- For subpopulation of diagnosed diabetics:
 - Estimate mean age 1st told diabetic
 - Estimate # take diab pills & prevalence diab pills